High-radiance LDP source for mask-inspection application

Yusuke Teramoto

B. Santos, R. Kops, M. Kops, F. Küpper*, A. von Wezyk*, T. Yokoyama, G. Niimi, H. Yabuta, A. Nagano, M. Yoshioka, T. Shirai, N. Ashizawa, H. Sato, K. Nakamura, K. Kasama

USHIO INC. / *Fraunhofer ILT

October 8, 2013

I N D E X

- **■** Basic Principle of LDP source
- **■** Source brightness of LDP source
- **■** Source cleanliness
- Summary

Sn + Laser + Discharge: Key for high radiance

LDP: High-radiance, clean, stable EUV photon to the tool

LDP: Stable and reliable

- o Tin is always available at all time (thin film) No time discretization
 - No timing error that would cause a loss of synchronization with the discharge
- Tin is always at the same location No spatial discretization
 - No positional error that would result in instability in the conversion efficiency

Experimental system: PoC and debris-shield verification

Radiance measurement

Pulse Repetition Frequency (PRF) scaling up to 10 kHz

- ☐ Measurement was done up to 15 kW, 10 kHz.
- □ Radiance linearity has been confirmed with relatively higher efficiency at low frequency region.
- ☐ High efficiency (>12 W/mm²/sr/kW) was maintained at 10 kHz. (ref. ~1 W/mm²/sr/kW in case of Xe GDPP)

8

Emission image and profile 10 kHz

Averaged radiance vs plasma radius

Radiance stability at 10 kHz

10 kHz (15 kW)
Dose-control off
Duty cycle 100 %
Frame-to-frame deviation: 9.7 %
300-frame-average deviation: 1.4 %

Position stability at 10 kHz

- ☐ Fluid dynamics ☐ Thermal stabilization
- ☐ Geometry

Dose control test at 10 kHz

Dose control test at 10 kHz

Pulse repetition frequency		5 kHz	7 kHz	10 kHz DC OFF	10 kHz DC ON
E0	Stored energy	1.5 J	1.5 J	1.5 J	1.5 J
Average input	On capacitor	7.5 kW	10.5 kW	15 kW	15.2 kW
Peak radiance	At plasma	93 W/mm ² /sr	120 W/mm ² /sr	180 W/mm ² /sr	180 W/mm ² /sr
Energy	Pulse deviation	8.2 %	8.2 %	12.7 %	17.7 %
	Dose deviation	Not measured	Not measured	10%	<0.1 %
Radiance	Frame-to-frame deviation*	5.0 %	5.4 %	9.7 %	9.7 %
	Dose deviation**	0.7 %	0.7 %	1.4 %	0.7 %

^{* 1} frame = 1~2 ms exposure

^{** 300-}frame moving average

Sample measurement after IF aperture in litho source

Conditions

Source input: 9 kW

Distance from IF: 200 mm Exposure time: 6 hours Estimated EUV intensity:

0.19 W/cm²

✓ No tin peak (485-487 eV)

- Tin is completely blocked in LDP source
 - Analysis depth → 3-5 nm
 - Resolution → 0.1 At%

Summary

➤ Peak radiance at reasonable input power (15 kW, 10 kHz), under which sufficient component lifetime is obtainable, is 180~200 W/mm²/sr at plasma (90~100 W/mm²/sr after debris shield).

Performance summary (as of September 2013)

Item	Current performance	Remark
Pulse repetition frequency	10 kHz	Variable
Input power	15 kW	at capacitor
In-band EUV power	300 W/2πsr	at plasma
Peak radiance efficiency	12 W/mm ² /sr/kW	at plasma
Peak radiance	180 W/mm ² /sr	at plasma
Average radiance (φ200 mm)	150 W/mm ² /sr	at plasma
Plasma size	200×450 μm	FWHM
Energy stability	12.7 % (pulse) 10 % (300-pulse dose)	at 10 kHz DC OFF
Energy stability	17.7 % (pulse) 0.1 % (300-pulse dose)	at 10 kHz DC ON
Pook radiance stability	9.7 % (frame) 1.4 % (300 frame)	at 10 kHz DC OFF
Peak radiance stability	9.7 % (frame) 0.7 % (300 frame)	at 10 kHz DC ON
Position stability	~10 µm	at 10 kHz

